6CG8A

MEDIUM-MU TRIODE— SHARP-CUTOFF PENTODE

Miniature type used as combined oscillator and mixer tube in color and black-and-white television receivers utilizing an intermediate frequency in the order of 40 MHz. When used in an AM/FM receiver, the triode unit is used as an oscillator for both sections. In the AM section, the pentode unit is used as a high-gain

9GF

pentode mixer; in the FM section, the pentode unit is used either as a pentode mixer or as a triode-connected mixer depending on signal-to-noise considerations. Outlines section, 6B; requires miniature 9-contact socket. Type 5CG8 is identical with type 6CG8A except for heater ratings. These types are electrically identical with miniature type 6X8 except for interelectrode capacitances.

5CG8 4.7 0.6 11	6CG8A 6.3 0.45 11	volts ampere seconds
		volts
100 max Unshielded	100 max Shielded*	volts
	1.5	рF
	2.4	pF
0.5	1	pF
0.04 max	0.02 max	рF
4.6	4.8	pF
0.9	1.6	рF
		pF
		ρF
6.5	6.5	ρF
	4.7 0.6 11 ±200 max 100 max Unshielded 1.5 2 0.5 0.04 max 4.6 0.9 0.05 max 0.05 max	4.7 6.8 0.6 0.45 11 11 ±200 max 100 max

[&]quot;With external shield connected to cathode, except as noted.

[·] With external shield connected to plate.

6CH3	For replacement use type 6CJ3/6CH3.
6CH8	Refer to chart at end of section.
6CJ3	For replacement use type 6CJ3/6CH3.

6CJ3/6CH3 HALF-WAVE VACUUM RECTIFIER

Novar type used as damper tube in horizontal-deflection circuits of black-and-white television receivers. Outlines section, 30F; requires novar 9-contact socket. Socket terminals 1, 3, 6, and 8 should not be used as tie points. This tube, like other power-handling tubes, should be adequately ventilated. Heater: volts (ac/dc), 6.3; amperes, 1.8.

9HP

Damper Service

For operation in a 525-line, 30-frame system

MAXIMUM RATINGS (Design-Maximum Values)		
Peak Inverse Plate Voltage# Peak Plate Current	 5500 2100	volts mA
Average Plate Current	 350	mA
Plate Dissipation Heater-Cathode Voltage:	 6.5	watts
Peak value Average value	5500 900	volts volts

volts

CHARACTERISTICS, Instantaneous Value		
Tube Voltage Drop for plate current of 700 mA	25	

Pulse duration must not exceed 15% of a horizontal scanning cycle (10 microseconds).

Refer to chart at end of section. For replacement use type 6CL3/6CK3.	6CK3
Refer to chart at end of section.	6CK4
For replacement use type 6CL3/6CK3.	6CL3

9HP

HALF-WAVE VACUUM RECTIFIER

6CL3/6CK3

Novar type used as a damper tube in horizontal-deflection circuits of color and black-and-white television receivers. Outlines section. 30B: requires novar 9-contact socket. Socket terminals 1, 3, 6, and 8 should not be used as tie points. This tube, like other powerhandling tubes, should be adequately ventilated. Type 12CL3 is identical with type 6CL3/6CK3 except for heater ratings.

Heater Voltage (ac/dc) Heater Current Heater Warm-up Time (Average)	1.2	12CL3 12.6 0.6 11	volts amperes seconds
Direct Interelectrode Capacitances: Plate to Cathode and Heater Cathode to Plate and Heater Heater to Cathode		9	pF pF pF

Damper Service

For operation in a 525-line, 30-frame system

MAXIMUM RATINGS (Design-Maximum Values) Peak Inverse Plate Voltage# 5500 volts Peak Plate Current 1300 mA Average Plate Current 250 mA Plate Dissipation
Bulb Temperature (At hottest point) 8.5 watts 220 Heater-Cathode Voltage: +300 -5000 volts Peak value +100---900 volts

CHARACTERISTICS, Instantaneous Value

Tube Voltage Drop for plate current of 350 mA 16 volts # Pulse duration must not exceed 15% of a horizontal scanning cycle (10 microseconds).

9BV

6CL6 **POWER PENTODE**

Miniature type used in output stage of video amplifier of color and black-and-white television receivers and as wide-band amplifier tube in industrial and laboratory equipment. Outlines section, 6E; requires miniature 9-contact socket.

Heater Voltage (ac/dc) Heater Current	6.3 0.65	volts ampere
Peak Heater-Cathode Voltage		volts
Direct Interelectrode Capacitances (Approx.):		_
Grid No.1 to Plate Grid No.1 to Cathode, Heater, Grid No.2, Grid No.3,	0.12	pF
and Internal Shield	11	ъF
Plate to Cathode, Heater, Grid No.2, Grid No.3,	**	P 1
and Internal Shield	5.5	pF

Class A₁ Amplifier

MAXIMUM RATINGS (Design-Center Values)	
Plate Voltage	. 300 volts
Grid-No.3 (Suppressor-Grid) Voltage, Positive value	
Grid-No.2 (Screen-Grid) Supply Voltage	
Grid-No.2 Voltage	. 150 volts
Grid-No.1 (Control-Grid) Voltage:	. 50 volts
Negative-bias value Positive-bias value	. 0 volts
Plate Dissipation	
Grid-No.2 Input	
Bulb Temperature (At hottest point)	. 200 °C
TYPICAL OPERATION	. 200
	07014-
Plate Voltage	. 250 volts
Grid No.3 Con	nected to cathode at socket . 150 volts
Grid-No.2 Voltage	
Grid-No.1 Voltage	
Peak AF Grid-No.1 Voltage	
Zero-Signal Plate Current Maximum-Signal Plate Current	
Zero-Signal Grid-No.2 Current	
Maximum-Signal Grid-No.2 Current	
Plate Resistance (Approx.) Transconductance	
Load Resistance	
Total Harmonic Distortion	
Maximum-Signal Power Output	
Grid-No.1 Voltage (Approx.) for plate current of 10 μ A	
TYPICAL OPERATION IN MHZ-BANDWIDTH VIDEO AMPLIFIER	. 11
Plate Supply Voltage	. 300 volts
Grid No.3 Con	nected to cathode at socket
Grid-No.2 Supply Voltage	
Grid-No.1 Bias Voltage	
Grid-No.1 Signal Voltage (Peak to Peak)	
Grid-No.2 Resistor	
Grid-No.1 Resistor	
Load Resistor	
Zero-Signal Plate Current Zero-Signal Grid-No.2 Current	
Voltage Output (Peak to Peak)	
voltage Output (Peak to Peak)	102 40165
MAXIMUM CIRCUIT VALUES	
Grid-No.1 Circuit Resistance:	A.1
For fixed-bias operation	. 0.1 megohm . 0.5 megohm
For cathode-bias operation	. 0.5 megohm

6CL8

Refer to chart at end of section.